Non-Convex Phase Retrieval From STFT Measurements
نویسندگان
چکیده
منابع مشابه
Non-Convex Compressed Sensing from Noisy Measurements
This paper proposes solution to the following non-convex optimization problem: min || x || p subject to || y Ax || q Such an optimization problem arises in a rapidly advancing branch of signal processing called ‘Compressed Sensing’ (CS). The problem of CS is to reconstruct a k-sparse vector xnX1, from noisy measurements y = Ax+ , where AmXn (m<n) is the measurement matrix and mX1 is additive no...
متن کاملFast Phase Retrieval from Local Correlation Measurements
We develop a fast phase retrieval method which can utilize a large class of local phaseless correlationbased measurements in order to recover a given signal x ∈ C (up to an unknown global phase) in near-linear O ( d log d ) -time. Accompanying theoretical analysis proves that the proposed algorithm is guaranteed to deterministically recover all signals x satisfying a natural flatness (i.e., non...
متن کاملPhase retrieval from very few measurements
In many applications, signals are measured according to a linear process, but the phases of these measurements are often unreliable or not available. To reconstruct the signal, one must perform a process known as phase retrieval. This paper focuses on completely determining signals with as few intensity measurements as possible, and on efficient phase retrieval algorithms from such measurements...
متن کاملProvable Non-convex Phase Retrieval with Outliers: Median TruncatedWirtinger Flow
Solving systems of quadratic equations is a central problem in machine learning and signal processing. One important example is phase retrieval, which aims to recover a signal from only magnitudes of its linear measurements. This paper focuses on the situation when the measurements are corrupted by arbitrary outliers, for which the recently developed non-convex gradient descent Wirtinger flow (...
متن کاملConvex Phase Retrieval without Lifting via PhaseMax
Semidefinite relaxation methods transform a variety of non-convex optimization problems into convex problems, but square the number of variables. We study a new type of convex relaxation for phase retrieval problems, called PhaseMax, that convexifies the underlying problem without lifting. The resulting problem formulation can be solved using standard convex optimization routines, while still w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Information Theory
سال: 2018
ISSN: 0018-9448,1557-9654
DOI: 10.1109/tit.2017.2745623